roofAI 🏛️ meets ⚒️ SageMaker + more- 3
Next, validate Amazon_JumpStart_Semantic_Segmentation.ipynb
Using model ‘mxnet-semseg-fcn-resnet50-ade’ with … ‘*’. … pin to … ‘2.0.0’ for more stable results. … models may have different input/output signatures after a major version upgrade…
fixed.
ClientError: An error occurred (404) when calling the HeadObject operation: Not Found
trying mxnet-semseg-fcn-resnet101-ade
, same error.
▶️ https://github.com/aws/amazon-sagemaker-examples/issues/4478
continuing,
check deploy_image_uri
: 763104351884.dkr.ecr.ca-central-1.amazonaws.com/mxnet-inference:1.9.0-gpu-py38
aws ecr get-login-password \
--region ca-central-1 | docker login \
--username AWS \
--password-stdin 763104351884.dkr.ecr.ca-central-1.amazonaws.com
docker pull 763104351884.dkr.ecr.ca-central-1.amazonaws.com/mxnet-inference:1.9.0-gpu-py38
✅
check deploy_source_uri
: s3://jumpstart-cache-prod-ca-central-1/source-directory-tarballs/mxnet/inference/semseg/v1.2.1/sourcedir.tar.gz
@select
aws s3 cp \
s3://jumpstart-cache-prod-ca-central-1/source-directory-tarballs/mxnet/inference/semseg/v1.2.1/sourcedir.tar.gz \
.
tar -xvf sourcedir.tar.gz
✅
base_model_uri
: s3://jumpstart-cache-prod-ca-central-1/mxnet-semseg/mxnet-semseg-fcn-resnet101-coco/artifacts/inference-prepack/v1.0.0/
aws s3 ls \
s3://jumpstart-cache-prod-ca-central-1/mxnet-semseg/mxnet-semseg-fcn-resnet101-coco/artifacts/inference-prepack/v1.0.0/
✅
Repacking model artifact (s3://jumpstart-cache-prod-ca-central-1/mxnet-semseg/mxnet-semseg-fcn-resnet101-coco/artifacts/inference-prepack/v1.0.0/), script artifact (s3://jumpstart-cache-prod-ca-central-1/source-directory-tarballs/mxnet/inference/semseg/v1.2.1/sourcedir.tar.gz), and dependencies ([]) into single tar.gz file located at s3://sagemaker-ca-central-1–120429650996/jumpstart-example-infer-mxnet-semseg-fc-2024–01–28–00–02–10–748/model.tar.gz. This may take some time depending on model size…
✅
continues.